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NOTE

On an Eighth Order Formula for Solving
a Schrodinger Equation

The study of finite difference multi-step schemes for constructing the solutions of sec
order linear ordinary differential equations, needed for example in investigations of ato
and molecular structure and scattering, has long been established. Popular among
available choices are Numerov’s method because of its small leading error and symn
and de Vogelaere's method because of the ease of applying it to sets of coupled differe
equations[1]and also various invariantembedding schemes such as Johnson’s log-deri
method [2]. The leading global truncation errors in all these are proportional to the fol
power of the step lengthh. Attempts to derive integration schemes with errors of highe
order inh are comparatively few because of the success of the cited methods. One
higher order method is the eighth order formula of Allisaml.[3] with global error©®(h8).
These authors demonstrated that this method works well for a number of examples but
illustration of calculating phase shifts induced by a 6-12 Lennard—Jones potential req
further study because of the strong repulsion at the origin; the variation of the error with :
length must be studied carefully when finite difference methods are applied in the pres
of such strong singularities [4]. The 6—12 form is a potential with a well at medium ran
a long range van der Waals attraction, and a very repulsive core at short range. The
can complicate the error analysis.

The equation solved by Allisoet al. is, for zero angular momentum,

d2y(r)/dr? + (cor ® — cror "2+ k?)y(r) =0 1)
with boundary conditions
y(0) =0 y(r) — A(sinkr + tané coskr) asr — oo, (2)

wherer is the independent variables andc;, are coefficients each equal to 500 in ap
propriate unitsk is the wave numberA is a constant, anél is the phase shift. Near the
origin the equation is dominated by the'? term and its solutions contain modified Besse
functions as factors [5] which are asymptotically like/? exp[./(C12)/5r °] for smallr.

Finite difference formulae, including the eighth order one, cannot follow these functic
adequately. It has been shown that when Hartree’s method is used to solve this equa
starting error occurs which vanishes when exp{(c12)/5h°] is small (as it is for smalh)
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TABLE |
Rotationless Phase Shifts

k h Exact Numeroy Eighth Ordef
1 0.04 0.15442 0.15491

1 0.08 0.15442 0.16270 0.154
5 0.03 —0.48303 —0.48302

5 0.06 —0.48303 —0.47438 —0.484
10 0.025 —0.43100 —0.42593
10 0.05 —0.43100 —0.34910 —-0.43r

2 This calculation.
b Ref. [3].
¢ Incorrect sign displayed in Ref. [3].

leaving the expected(h?) error [6]. Similar error behaviour is expected for any finite
difference method applied to Eq. (1) but accurate values of the phase shifts can be proc
if sufficiently small step lengths are used; the results shown as “exact” in Table | w
obtained with small step lengths. In the examples studied below, the angular momentt
chosen as zero because otherwise the centrifugal barrier tends to keep the colliding pal
out of the core region, as is reflected in the results of Allisbal.

Table | shows that the eighth order formula is much more accurate than Numer
method. The term exp[/(C12)/5n%] is very smalll for all the step lengths quoted in Table |
and the inability of Numerov’s method to follow the Bessel functions near the origin can
discounted in these calculations; surprisingly, this problem matters mostwhen the coeffi
of ther =2 term is very small [6]. However, as we show, the? term is still responsible
for the marked superiority of the eighth order formula but to some extent this is an arte
of the problem under consideration. The differential equation may be written

d?y(r)/dr? — K2(r)y(r) = 0, ®3)

whereK (r) is a local quantity analogous to a wave number. The leading term of the Ic
relative truncation error of Numerov’s method has magnitudé &f)®/240 approximately
and the ratio of the next term to it is abahitk )2/23. The leading term of the local relative
truncation error of the eighth order method has magnitude approximétély®/10°.
(A factor f was omitted from the first term of Eq. 2.1 of Ref. [3]). The wave function |
extremely small near the origin because of the strong repulsion and remains very small
r ~ 0.8; numerical experiments show that when the integration is started between the o
andr = 0.8 the calculated phase shift is correct to five significant figures but not otherw
This means that, for five figure accuracy, the local errors become significant in both
Numerov and eighth order calculations only whien 0.8.

Table Il shows the truncation errors foe=1 (they are not much different fder=5 and
k=10). It can be seen that for step length 0.08 the Numerov errors are substantial and,
the last column, that far < 0.83 theh® Numerov term is larger than thé term and cannot
be ignored. The large errors arise from thé? term in the potential which caus&s(r) to
be large, as can be seen in the second columnhE00.04 the Numerov errors are much
smaller; values in the last column would be divided by four. The errors for the eighth or
method are much smaller than the Numerov values f010.08; while they start large they
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fall very rapidly. It is by chance that they fall so quickly just in the region where the wa
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TABLE Il

Local Truncation Errors with k=1

(hK)8/240  (hK)%/240  (hK)©/10°¢  (hK)2/23¢

r K@?® (h=004  (h=0.098 (h=008  (h=0.08
0.80 733 2.6 170. 50. 15
081 67.1 1.6 99. 21. 1.3
082 614 0.9 58. 85 11
0.83 56.1 05 34, 35 0.9
0.84 513 0.3 20. 1.4 0.7
0.85 46.8 0.2 11. 0.6 0.6
0.86 42.7 0.1 6.6 0.2 0.5
0.87 388 0.1 3.7 0.1 0.4

2 Local wave number.
® Numerov.
¢ Eighth order, Ref. [3].
d Ratio of Numerowh® term toh® term.

function starts to grow, thus flattering the eighth order method.

The fourth differences of phase shifts induced by a nonsingular potential and calcul
by Numerov's method, with its glob@ (h*) error, should be almost constant. In Table Il
showing differences of phase shifts calculated for the 6—12 potential at wave nkimtier
they start to be constant for step lengths around 0.04; they are constant for smaller
lengths but not for step lengths near 0.08, where the higher power termsin the error expa
can be important. The constant fourth differences allow very accurate phase shifts to be f

TABLE 11l

Differences and Extrapolation for Numerov's Method with k=1

h Phase shift 2nd 4th Extrapolated
0.005 0.15442116 0.00000590 0.00000293 0.15442110
0.010 0.15442293 0.00001302 0.00000302
0.015 0.15443059 0.00002308
0.020 0.15445128 0.00003616
0.025 0.15449505
0.030 0.15457498

0.01 0.15442293 0.00009535 0.00005269 0.15442519
0.02 0.15445128 0.00021277 0.00005851

0.03 0.15457498 0.00038288

0.04 0.15491144 0.00061150

0.05 0.15563079

0.06 0.15696164

0.02 0.15445128 0.00159003 —0.00073171 Invalid
0.04 0.15491144 0.00369093 0.02088290

0.06 0.15696164 0.00506013

0.08 0.16270277 0.02731222

0.10 0.17350403

0.12 0.21161752
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by extrapolation. When the step length is increased, the exponential behaviour referr
earlier must eventually be considered. Table 11l shows the Numerov calculations with a
length of 0.04 to be almost acceptable although less accurate than eighth order calcula
the higher order (irh) errors become less important around the point where the we
function starts to grow.

Itis concluded that caution is needed when applying any finite difference methodto s
a differential equation with singularities. In particular, the results obtained when testir
new method, such as the eighth order formula, on such an equation must be exar
carefully. The eighth order formula is more accurate than Numerov’s method (as migh
expected) for evaluating scattering by a Lennard—Jones 6—12 potential but it is flattere
this example because the wave function grows significantly just when the local trunce
error decreases acceptably.
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